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ABSTRACT
15 537

A number of problems related to the feasibility of measuring lunar
heat flow at the lunar surface or in a shallow hole have been investigated
with the following results. Study of the steady periodic temperatures
in the lunar material will give unambiguous information about its
properties only if the surface material alone has an appreciable effect
on the amplitude and phase of the thermal wave. Layering tends to reduce
the amplitude of the fluctuation at a given depth. High-amplitude
fluctuations near a place where the poorly conducting surface layer is
missing do not penetrate far and pose no difficulty. Large perturbations
of heat flow may be caused by irregularities in thickness of the surface
layer, and a oumber of closely spaced measurements at a given landing
site will be required to minimige this source of error. The "blanket"
method of measuring lunar heat flow is not considered feasible because
of the necessity of very closely matching the local albedo with the
blanket, and because a blanket with properties such that an easily
measured gradient free from periodic fluctuations can be set up by the
lunar flux requires a prohibitively long time to come to thermal
equilibrium. Conversely a blanket with a suitable time constant will

yield only a small, seriously disturbed gradient that will be difficult

to measure. /$;72aﬁ




1. INTRODUCTION

A measurement of lunar heat flow will be interesting for a number of
scientific reasons. Heat flow gives more direct evidence about the
internal thermal regime of a planet than any other measurement that can
be made at the surface. Limits to the total amount of radioactive
elements in the planet's interior can be set, as well as limits to its
initial temperature. In the case of the moon, a determination of heat
flow will help to decide just how "dead" it is, since the source of
volcanism and mountain building must ultimately be thermal energy, most
of which is leaked to the surface to appear as heat flow., The small size
of the moon makes it especially interesting from the thermal point of
view. Cooling from the surface has affected some 70% of the volume of
the moon compared with about 207 of the earth, assuming the two bodies
are of the same age. As a consequence the relative importance of initial
heat and radiogenic heat may be very different on the moon as compared
with the earth, a possibility which makes a comparison of heat flow from
the two bodies all the more interesting.

But granting the desirability of a measurement of lunar heat flow,

a number of obstacles remain in the way. On the terrestrial land surface
heat flow is measured in boreholes, mines or tunnels reaching depths up
to several thousand feet, Considerable depths are necessary in order to
avoid disturbances which occur near the surface. There is no prospect of
drilling a deep hole in the moon in the foreseeable future, and any
measurement of heat flow must be made at the surface or in a shallow hole.
The temperatures near the lunar surface are in the first place affected

by the large monthly variation in surface temperature, and secondly by

1.
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thermal refraction due to variability in the thickness of the lunar
surface material, which is known to be of very low thermal conductivity
compared to solid rock. The goal of the present study is to assess the
seriousness of these difficulties,

In the calculations which follow, the assumption that the lunar
situation can be adequately represented by a linear model, i.e. a model
in which the thermal properties of the lunar material are treated as
independent of temperature, is made. This assumption is probably very
wrong for materials near the lunar surface under ambient lunar conditions.
Temperatures are below the Debye temperatures of common rock-forming
minerals, implying a temperature-dependent specific heat. Radiative
transfer is presumably an important contributor to the thermal conductivity
of the porous surface material, and it is strongly dependent on temperature.
Both factors argue for treatment of nonlinear models, but the additional
complication is hardly warranted in view of the remaining uncertainties
in the details of the properties of the lunar surface material. Thus the
present study represents a8 first approach to the problem, aimed more at
recognizing difficulties than at removing them.

Four problems are considered in detail in the following sectionms.
The first is the case of one-dimensional steady periodic heat flow in a
stratified medium consisting of two layers of differing thermal properties,
resting on a substratum of infinite thickness which has a third set of
thermal constants. An exact solution is obtained for the case of
semiscidally varying surface temperature.

A second problem again concerns steady periodic temperatures, this

time in a two-layered medium with the upper layer absent within a circular




3.
region. Numerical results are obtained for this model of a hole in the
moon's poorly conducting surface layer. Perturbations of heat flow due
to variable thickness of the surface layer are investigated under steady-
state conditions, and finally results are extended to calculations of the
disturbances associated with the emplacement of a blanket-type thermal

fluxmeter on the lunar surface.
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2. STEADY PERIODIC TEMPERATURES IN A 3-LAYERED MEDIUM
A, Theory
Mathematically the problem can be expressed in the following way.

The region 0 < x < X, contains material with properties I_(l, €1, _c_l, etc.

1
(see table 1 for notation), the region X, < x _<._}§3 contains material with
properties 52, etc.,, and the region x > ES contains material with
properties 53, etc, At the boundaries gl and _)g3 both temperature and
thermal flux (=K c—";-’T-E) are continuous, T -3 0 as x - », and T =§o sin wt

when x = 0, where A is the constant surface amplitude. Within each

2
region T must satisfy the equation of heat conduction, -?—-g =é%
x

This problem is most conveniently solved by the Laplace transform
method described by Carslaw and Jaeger (1959). Further details about
this particular problem are given by Lachenbruch (1959), who obtained the
solution for the special case x =§3. If we write _i‘ for the Laplace
transform of T, and use subscripts to identify the three regions, we have

(Lachenbruch, 195¢):

-'fl = Fexp(qlx) + Gexp(-qlx), (1)
T, = Hexp(q,X) + Jexp(-q,X), @)
53 = Rexp (-qax), 3)

where F, G, H, J, and R are constants, independent of X. The two boundary
conditions at each interface, x =_)_(_1 and x = ES’ plus the condition at
x = 0, provide 5 equations which determine the 5 unknown quantities

F’ G, H’ J, 8nd Rc
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Table 1. Definitions of Symbols

Temperature

Time

Depth variable

Depth to base of upper laygr

Depth beneath base of upper layer

145

Angular frequency, = 2.66 x 10-6 sec™l for 1 lunar day
Thermal conductivity of the ith layer

Density of the ith layer

Depth to top of substratum, =X

Heat capacity of the ith layer

Thermal diffusivity of the ith layer, = Ki/pici
Thermal inertia of the ith layer, = (Kipici)s
Parameter of the paplace Transform, T = I:Exp(-pt)T'dt
@/a)*

geat flow

Thickness of blanket

Subscript denoting properties of blanket
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6.
'Thé transforms of equations (1)-(3) can be inverted by the contour integration
method. Lachenbruch (1959) has already shown that the line integrals involved in
the inversion contribute only to the initial transient state and have nothing to do
with steady periodic temperatures. Hence for present purposes we need consider
only the residues at the poles of the transforms., Poles are located at
p = tiw; following Lachenbruch, we assume that the quantity A (equation 9) has no
zeros in the complex plane. It can be shown that the solution given below does
indeed satisfy all of the conditions of the problem, which constitutes proof that
either A has no zeros or that the residues at the resulting poles contribute
nothing to the steady ;eriodic part of the solution,

The residues at p = tiw lead to the following expressions for the temgeratures.

A
Tl ='sg{ex;(-Ju/Zalx)sin(wtﬂJuVZQIx}+

+P, [exp (-ZJWZalxl-sz/ZazxszZalx)sin(wt -a/uymlxl -2Jw/2a2x2+duy2a1 =)+
+ ex; (-ZJw/Zalxl-Z,,/w/Zazxz—~7u.)/2a1g)sin(ut+2JuV2a1x1+L/uV2azxz -J&VQE;::)H
+ p3[ exy (-ZJw/ZaIXlWZalx)sin(wt-zf&]?‘ixlwm&_lxﬂ

+ exp (-2//20) X, -vW/2Q, x)8 in(Wt42 /020, X, -/ 20 x) 1

+ P 4[exp (-2J/Z0, X, -/&/20, x)sin (Lt-2/0772a, a@,X, -vw/T—alx)-b

+ exp (-2/8/20,X, -/&/2q, x)sin (wt+z./_“w/2a2x2 -Ju/2Q -lx) b

+ P2P3[exp(-ll-\fu)'/-z_—alxl-&/r Za.zxz-h/(v—Zalx)sin (wt+z¢w/2a2x2w@zalx)+

+ exp(-hvﬁVZalxl-thVZGZXthQ/Zalx)sin(wt-zvﬂy205x2+vﬂyialx)}+

+ PP a[exp(- w/2a1x1-ww/2a2x2+,/u72a1x)sin (M-N&/Zalxlmalxﬂ

+ exp (-2/uw/20, X, -4//20, %, -.\/(—172a1x)sin (we+2:/w/2a. X, -So/20, ) 1+

+ PP 4[ exp (-L/w/zalx 1 -2Jw/2azx2+Jw/2a1x) sin (wt-24w/2a1x1+2Juy2a2x2ww/2a1x >+

+ GXP('ZV“VZGIXI'ZVQVZOQXZ'VEVZQIX)Sin(wt+thV201X1'2v@720§X2ﬂJ@/zalx)}+
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.+, exy (~o/B/ 2K, =l 20, K,/ 20 x) 8 0 (wth /200, x) T

"+ P 32 [ex; (-4/ay/ 20X+ Sy 2a1x) sin(wth/a/ 2a1x) =

+ P 42 [exp (~4/uy’ 2(12}(2 “Ju/ Zalx) sin(uwt-vu/ 2Ct1x) 13 (10)

A
Ty= o By¥R,)expl-via/20, X, -/ 26, Ky x) M stn[wt-//20, X, /2%, (y+y-x) I+

+P, exp[-NW2alxl-w202X2]sin[Ww/Zalxl-JuVZGZ (Xl-x)]+
+ Py exp[-ZJ«YZC!IXI]sin[wtﬁaﬂalxl-Jw/Zaz (XZ+X3~x)]+

+?, exp[-ZJm/Zqzxz]sin[mt-«/uyzalxl-«/w/Z% &, -x) 1]+

A
+ 5o (2 dexp[ V20, %, /oy 20, (%, -x) M sinlut-/a/2a X w/28, (X, -x 1+
+ P, expl-2V07ZG X -2/ 7, I8 in (wt/a/ 20, X +/672G, (X, +X4-x) H

+ Py expl-2/0/20,X, Isinwth//20, X #/oy20, (X, -x)

+ P, expl-2/0/20,, Jsin[wt-va/20 X h/it/2a, (X,+X4-x) ] } (11)
AP

'1’3 = ; 1 exp[-Jw/Zalxl-.ﬁ)/ 2a2x2+Jm/ 2Cl3 (xa-x) H{sin(ut -th—VZalxl-.\/w?Zazxzh}w?iaa
(X3 ‘X) }"

+P, exp[~wm/2a1x1-wuy2a2x2 ]sin[m:uw/ZalxlNuVZazxzww/ia; (x, -x) A

+ P 3 expl -2«/(»/2(11}{1]sin[mt-lv\/uﬂcylxl-,\/m/ZczzXz-h,/ua/Za3 (X3 -x)

+P, exp[-zf_‘w/zazxz ]sm[wt-Jw/zaIXIWw/zazxzww/za3 (x3-x)]} (12)

where

D = 142P,exp (-2/w/2a 1xl-z\/w7zoz2x2 Ycos (ZJW{XI*FWT&;XZ )+
+ 2p 3 exp (- m/2alx1) cos (ZJw/Zalxl 2P 4 &XF (—ZJw/ 2(121{2 )cos (&/WZazxz )

+ 2P2.P3 exp (-4/w/ 2a1X1-NW2a2X2 )cos (L/m/ 20(2)[2 Y+
+ 2P,P, exy (-2.\/'w/2alxl-1+~/'w/ 2a2x2 Ycos ( uy2a1x1)+
+2P.P, exp (-uwzalxl-uw/zazxz)cos (z,./m/zozlx1 -2JuV2a2x2)

+ P, exp(~U/TELX, /BTGRP . ex (-4 TCK, 142, exp (-4 205X,)  (13)




and

4468,
Pl = 2
82.‘3"’.”-192*52 "'flC:;
2
P '5253"13152"'&2 'ﬁﬁ
2 2
BaP3tP1Py*Ey HB41P3
2
o o T2PatPPy By 4By
3 2
BoPatP Py tPy 1P,
2
B P =By =By
r, - 2'3 12“‘5*22 173 (16)
BBt 18y 1R, 1848,

The temperature is a sinusoidal function of time at all depths. It is useful to
have the solutions in the form T = A sin (wt+ ), i.e. in terms of the amplitude

and phase of the fluctuations. We write A = _A_o JnihciZ and = -tan'l(gi/ci),
D

and find that the Bi and Ci are given by the following expressions.

B, = exp (-Ju/2a 1x)sin(«/u72'a-1x)+l’2[exp (-sz/zalxl-z\/uyzazxzwwzalx)-
-exp (-2v/0/20, X, ~2/5200, X, -/0/2, x) ]sin (2/0/2G,; I S NI -A/w‘7"‘za'1'x)+

+P3{ exp (-2v/w/ 2(11X1-w7n/ 2a1x) -expy (-M/Zalxl'-,./w/Zalx) Jsin (2»\/(0/2(11)(1 -»\/w77a1x)+

+2P exp (~2Jw/202X2 W’(B/ZOzlx) cos (2«/w/2azxz)sim/w/2a1x 4

-2P,P,exp (-Ww/Zalxl-ZJw/Zazxzww/ 2a,x)cos (&/m/Zazxz Ysin// 2a,x

+P,P 4[ex; (-m/zalxl-wm/zazxzww/zalx)-ex;. (-zﬁnﬁa;xl -m>/2a2x2 —Juvzalx) Ix

xsin(2/w/2a X, -Jw/Zalx)+P3P A[exp (-sz/zalxl-Mm/zaZXZW2a1x) -

-exp(-ZJw/Zalxl-Z;ﬁu/Zaz -Jw/Zalx) Jein (Zv'w/'Zal'xl-&fw72_a2" X, @720 o, x)

--P22 exp (~4/w/ 2(11)(1 N 2a2X2+,Jw/ Za1 x) sim’w/’;!alx

-P32 exp ( -Mw/Zalxlh/w/ Zalx) sin// 2a1x+P 42 exp (a0 2a2x2 -/ 2(11 x) sim}w?ZCllx (15)



9.
<’:1 = exp (-JWZalx)co&/WZalﬁPZ[exp(-ZM_IXI—Nw/'ZaZXZMWZGIxﬁ
+exp (-2/uy/ 20X, -2/uy/ 20X, =/ 2a,x) Jcos (2/w/ 2a1X1+2../§u/ 20X, -y 20,x)+
+P3[exp (-NWZalxlﬁfw/Zalx Hexg (- sz/zalxl-JuyZalx) Jcos (ZJm/ZQIXI-Jm/Zalx)-F
+2P 4, €XP (-2/w/ 2a2X2 vy Zalx) cos (ZJw/ 2(12X2 )cost/ 2(111:
+2P,P exp (-A\/uyzalxl-z./w/Zazxzﬁw/ 2a,x)cos @/ 2%, Ycosvuy/ 2a,%
+P,P, [exp (-ZJWZQIXI-WQ/ZGZXZ-I\/WZCtlx)+exp - WZalxl-WZazxz —Jus/zalx) Ix
xcos (Wzalxl-Jw/Zalx PP a[exp (-Nw/Zalxl-ZJuyzazxzww/Zalxﬁ
+exp(-24hyzaix1—zvﬂyya&x2-qhyzalx)jcos(z¢m/za1xl-zqﬁynabx2-vhyzalx)
+P22exp (-MWZQIXI-Ww/ 2(12X2ﬁ/w/2alx)cosﬁ)723;x
+P 32 exg (-4/uy 2a1X1Hw/Zalx)co Zalx+P 42 exp (~4/w/" Zazxz -/ Zalx)cosm«:x—lx
(16)

B, = (®,*P,)exi[ /20 X, -Ji/20, (2,4, -x) W sinlVy/20, X, /20, (X, 4K4-x) ]
-P,exp (-Nu)/Zdlxl-ZJw/Zazxz)sianq/Zalxl-.,/w/Z(zz (Xl-x)]
-P,exp (-Wia;xl)s in[Jw/ZalxlW/Zaz.(xz+x3-x) ]
+P, exp (-sz)sin[Jw/Zalxl-hquZQZ ®,-x)1}
+(1+P 4 Yexp [ -/ 20, X Wio/20, (X, -x) ) sinlViy/20, X, V20, %, -x) 1-
-P,exp (-Nw/Zalxl-ZJ%%xz' ) ah{ﬁyzalxlww/zaz (X, +X, -x)]
-Pyex; (-2/w/20; X, Ysinlu/20, X /20, (X, -x) ]
+2, exp (-2//20, X, ) sin[V/20 X, /20, (X, +K 5 %) ] } Qa7)

= (P,+P A)exp[-.\/w/ Zalxl-JuVZaz (X)X, -x) ji cos[Jw/2a1x1+Jw/202 (X, +X4-x) ]
+P, exp (-2//20, X, -2/w/20, X, ) coslVu/20, X, /20, (X, -X) ]

+P exp (-2,./m/2cx1x1 )cos [4?»/2a1x1 -Jm/2a2 (X2+X3-x)]

+P, exp (-a/m/Zazxz Yros [Ju;/ZaIX]-h_"ﬁaz &, -x)]}

+(1+2)exp[ -vi/20, X h// 20, (X, -x) N cos (V20 X, -V 20, (X, -x) ]

+P,exp (-&/w72a1x1-ww72a2x2 Ycos [‘\/w/Zalxl-h/u;/Zaz (R, +%y-x y]

+p 3exp(-2rﬁ7ﬁi'll) coa[vu/2a, X, Wi/20, (X, -x) ]

+P exp ('2«7‘072a2X2)cos[»/m/2alxl-ni0)/2a2 a,x 3-x)] 1 oY (18)

(18)
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By = Py xp 770 7 Ty Ty -2 Yo A 2 K i 2 7 (5730
~P, exp (-L/WZalxl-L/W_ 'za'zxz )s1nl /20, X, h/u/20, X, h/u/20, (R4 -x) ]

-Pjexp SN 2(',!1)(1 ysin[Vuy 2a1x1-../w/ Z%thfu;/ 203 (X3 -x)]

+P, exp (-2,,/m/2c>¢2x2 ysin[J/w/ 20, X, -/ 20, %, -/ 20 (X, -x)]} (19)

+P2 exp (-ZJm/Zalxl-Z»./u;/ Zazxz )cos [Jw/Zalxl-h/w/ 2a2x2+4/w/2<z3 (X3 -x)]
+P3exp(-ZJGVZGiXI)cosEJm/Zalxl-thZa&x2+w67203CX3-x)]

+P, exp (-2/a/2a, x2)coé[«fw_——/Zal'xl-JuVZazxz -/ Ty (X,-x) ]} (20)

An alternative way of expressing the solutions in the middle layer and in
the substratum leads to results which are simpler in ajprearance. In the first
case, one may use Lachenbruch's (1559) solution for the two-layer problem, with
amplitude and phase at the surface calculated from equations (17) and (18) at
X = xl. In the substratum one may use the simgle solution for a uniform half
space (Carslaw and Jaeger, 1959, p. 65), with surface amplitude and rhase

calculated from (1%) and (20) at x = X The apparent simplification achieved

3
in this way proves to be of little value for practical calculation, however.

A number of terms which are independent of x, such as those on the right side

of (13), must be evaluated in order to obtain numerical results in the upper
layer and at the interfaces. Once this is done it seems simpler to continue

to use the three-layer theory rather than evaluating new exiressions which
appear in the two-layer theory, and which differ from those already evaluated.
The extreme simplicity of the expression for temperature in a homogeneous medium,

however, makes the alternative procedure more attractive than the use of

equation (12) in the substratum,
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The three-layer theory leads to expressions which are far too cumbersome
for hand calculation. Numerical results are easily and rapidly obtained by
a digital computer, however. Use of the exact theory insures that no unwanted
initial trensients affect the results. If finite difference methods are used,
assurance of freedom from transients is secured only by repeatedly cycling the
calculation, a procedure which is far more costly in machine time than is

evaluating the exact theory.
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B. Applications

In order to apply the theory developed above to the lunar surface,
the parameters of the problem must either be fixed, or their ranges must
be restricted by estimate or by lunar observations. There are eight
independent parameters (two thermal constants for each layer plus the
thickness of the upper two layers), since density and heat capacity always
occur in the equations as the product p ¢ and can be considered a single
parameter. Nevertheless a very large number of permutations of values
remains, and it is important to fix as many parameters as possible,

We shall take ¢ equal to 0.2 cal/gm °C in all models; this value is
appropriate to all common silicate materials under lunar surface conditions.
Fixing ¢ does not of course reduce the number of parameters unless p is
also fixed. Perhaps the best-known lunar parameter is the thermal inertia,
B, of the surface layer, which is known from infrared temperature measure-

¥

ments during a lunation to be about 0,0023 cal/cm2 °C sec® (see for

example, Sinton, 1961, p. 411). From this result we take the product

6 2

K p c for the lunar surface to be, nearly enough, 5 x 10~ calz/cmﬁ °C sec.
The very low value of the thermal inertia is the principal evidence that
the lunar surface is composed of granular material,

Analysis of radar echoes from the moon leads eventually to a determination
of the product of density and dielectic constant., Since the latter quantity
varies little among common silicates, the density may be inferred from
these results. According to Evans' (1961) summary, material with the
properties of loose sand would fit the radar data, i.e. a density between

1 and 2 gn;/cm3 would be expected. On the other hand, the radar reflections

may originate from a level beneath the optically defined surface. Lower
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surface densities would then be possible and would be the automatic
consequences of several postulated models of lunar surface structure
(Hibbs, 1963; Warren, 1963; Hapke, 1964). We shall consider models
with p ranging from 0.1 to 2.0 gq/cm?. Since ¢ and B are regarded as
fixed by other considerations, a choice of p alko fixes K for the particular
model of the surface layer.

We have no direct information about the properties of the subsurface
layers. We shall assume that the substratum consists of unfractured
basic rock; appropriate properties are shown in table 2. The intermediate
layer is presumably made up of rubble, with properties between those of
the surface layer and the substratum. Three possibilities have been
considered in order to indicate the effects to be expected from such a
layer. They do not exhaust the possible range of properties; models
with the surface layer resting directly on a solid substratum or with an
infinite thickness of surface material may be considered limiting cases.
The thermal properties that have been considered in the following numerical
calculations are collected in table 2.

It is useful at the outset to recognize two limiting types of
amplitude - depth relations. In a homogeneous medium the amplitude of
the temperature oscillation decreases with depth according to the relation
A = Ao exp(~.®/2Q x). The exponential damping law is obeyed far from
the lower contact of a thick surface layer of low thermal diffasivity. A
different extreme is encountered if the density of the material becomes
very small. The term in the equation of heat conduction containing the
time derivative then becomes negligible, and the amplitude is found to
decrease linearly with depth. The numerical results which follow contain

examples of both types of behavior,




Table 2. Properties of layers.

K P c o 8 X
cal/cm sec®C gq/cm3 cal/gm°C cm?/sec cal/cm2°c sec

I. Surface layer.

1. 2.5x10°% 0.1 0.2 1.25x10~2 2.24x10">
2. 5x10°° 0.5 0.2 5.0x10"% 2.26x1072
3. 2.5x10°° 1.0 0.2 1.25x107% 2.24x107>
4. 1.25x10°° 2.0 0.2 3.12x10™° 2.26x10"2
II. Intermediate layer.
-3 -3 -2
A 1x10 1.0 0.2 5.0x10 1.41x10
B 1x1073 2.0 0.2 2.5%107° 2.00x10"2
c 2x10”3 2.5 0.2 4.0x10™> 3.16x10"2
I1I. Substratum,
5x107> 3.0 0.2 8.33x10™> 5.48x10"2
IV. Blanket materials.
SI-10 2.69x10°' 0.032 0.2 4.20x10"° 4.15%x10™°
SI-91 4.14x10°2 0.120 0.2 1.72x10" % 3.15%10"°
Plastic 1.0x10" 7 1.3 0.2 3.85x10"% 5.10x10">



14.

In the calculations Ao was given the value 314°C., This is not
the amplitude of the temperature fluctuation at the lunar surface, but
rather is twice the amplitude of the fundamental mode in the Fourier
analysis of lunar surface temperature given by Sinton (1961). This term
is more interesting than the higher harmonics because it is about 5 times
as large and because it penetrates the most deeply. Doubling the amplitude
gives the total range of temperature directly.

Some typical results are shown in figs, 1 through 6. The curves of
amplitude and phase vs. depth have characteristic shapes; the sharp
drops in the curves as interfaces are approached are particularly note-
worthy. Study of both amplitude and phase seems to give little more
infomation than study of amplitude alone, although any program of
temperature measurement would automatically yield both quantities.

The amplitudes decrease exponentially near the tops of layers about
a meter or more in thickness. The law of decrease is the same as in a
semi-infinite region, and the thermal diffusivity of the layer can be
obtained from the damping observed. Where the exponential law is not
obeyed, the properties of more than one layer are involved and it is
doubtful whether they can ever be uniquely untangled. In the situations
where a linear law applies (cf. figs. 1 and 2), the properties of the
lower layers assume special importance relative to the upper layer in
which the linear damping occurs.

In a case in which mecasurements of temperature cannot be made throughout
the thickness of a layer, the proximity of an interface could be detected,
if indeed one were near. No more than this quélitative result can be

obtained unless the depth of the interface is also known (c.f. figs. 4, 5,
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and 6). Temperatures must be measured at the interface in order to determine
the properties of the underlying layer reliably, and little more than its
thermal inertia can be deduced unless some penetration of the underlying
layer is possible.

It is worthwhile remarking again that the above conclusions are
correct only if Umsarization of the conduction equation is valid. This
will certainly not be true close to the surface, and will only become
valid at depths where the oscillations in temperature are severely damped.
This depth is critically dependent on the surface material. In 2 homogeneous
region of material 4 of table 2(I), the amplitude reaches 1 degree at a
depth of 30 cm. In a homogeneous region of solid rock (substratum of
Table 2) an amplitude of 1 degree occurs at a depth of 450 cm., In both
cases the surface amplitude was taken to be 314 degrees, as before. The
presence of layering would reduce those depths., 1In practice, the linear
theory will probably be valid if the amplitudes are less than 10 degrees,

but should be regarded with suspicion in cases of higher amplitudes.
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3. STEADY PERIODIC TEMPERATURES NEAR A HOLE IN
THE SURFACE LAYER

The poorly conducting lunar surface layer may locally be absent,
and the substratum of higher conductivity may be exposed to high-
amplitude fluctuations in temperature at the surface. Damping near such
outcrops will be comparatively inefficient, and large amplitudes of the
thermal wave many penetrate the substratum both laterally and vertically.
We require an estimate of the extent of serious disturbance.

A simple geometrical model of an outcrop is obtained as follows.
Imagine first a two-layer structure of the sort described in the last
section, i.e. a uniform layer with one set of properties separated by a
plane boundary from a substratum of different properties. We then remove
a piece of the upper layer having the shape of a right circular cylinder,
and fill the resulting hole with material of the substratum. The result
is a cylindrical protuberance on the substratum extending to the original
plane surface.

Analytical solutions to heat flow problems in heterogeneous regions
of this degree of complexity are unknown, and recourse to numerical
methods must be had. The following calculations were made from the
simplest form of finite-difference approximation to the equation of heat
conduction in cylindrical coordinates (see for example Carslaw and
Jaeger, 1857, p. 468,470). The program written for the computer took
account of different conductivities in the two layers, but did not allow
for different densities and heat capacities. This simplification does
not affect the qualitative conclusions drawn from the calculations. A

second simplification was to assume that the surface temperature was



17.

independent of position and varied with time in the manner shown by
Sinton (15€1, fig. 3). Actually the amplitude of the variation would

be smaller in the hole, because of the better connection between the
surface and the lunar interior there, and the extent of the perturbation
of amplitudes is therefore slightly overestimated because of neglect

of this effect.

Results of the calculations are shown in fig. 7 as contours of equal
amplitudes. The conductivity of the surface layer is taken to be 1/10th
that of the substratum. It is evident from the figure that the effect of
the hole is negligible at a distance from the edge equal to its diameter,
and that serious perturbations do not extend further than about half this
distance. The amplitudes decrease monotonically with depth everywhere,
as is shown by the fact that no contour can be intersected more than once
by any vertical line, Thus there is no tendency for high-amplitude
fluctuations originating in the hole to 'run under" the surface layer.

It may be concluded from these results that the influence of an outcrop

on amplitudes does not persist for a distance greater than its diameter.
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4. STEADY-STATE PERTURBATIONS OF FLUX DUE TO
IRREGULARITIES IN THE THICKNESS OF THE
SURFACE LAYER

If the thickness of the poorly conducting surface layer is variable,
heat tends to be funneled towards thin spots in the layer and away from
thick spots, a phenomenon sometimes termed thermal refraction. Refraction
causes the flux dbserved at the surface to be high where the insulating
layer is thin and low where it is thick. Some studies of terrestrial heat
flow have revealed irregularities which may be attributable to thermal
refraction. Errors arising from this effect may be large in cases where
the conductivity contrasts are large; a good terrestrial example would
be near a salt dome in poorly consolidated, fine-grained sediments.

The contrast in conductivity near the lunar surface may exceed a
factor of 10 (table 2), a contrast that is considerably larger than one
would expect to encounter on earth, The proportional change in flux
scales according to the ratio of the conductivity of the substratum to the
conductivity of the surface layer, and hence large perturbations may be
expected near the lunar surface. The question was investigated
quantitatively by studying the steady-state temperature distribution
around cylindrical protuberances on the interface between an upper poorly
conducting layer and a better conducting substratum, The problem is
analogous to the investigation of amplitudes near an outcrop discussed in
the last section, but with constant surface temperature. The same machine
program was used, steady-state conditions being achieved by allowing the
calculation to iterate until the temperatures stopped changing.

In the application of a steady-state theory to the lunar surface,

it must be- assumed that the periodic transients either have been avoided
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by measuring heat flow in a sufficiently deep hole or have been removed
by observing temperatures over at least one cycle and calculating
undisturbed steady-state means. The results of this section show that
even if one of these ways of removing transient effects can be followed
(neither will necessarily be easy to carry out), perturbations leading
to erronecus measurements of lunar heat flow may still remain.

A number of typical results are shown in fig. 8. Cases (d) and (e),
in which the substratum crops out at the surface, lead to the largest
perturbations, but such localities are obviously atypical and could easily
be avoided. The perturbations are greatly reduced if the irregularities
in the interface are completely buried as in the other cases shown, but
nevertheless they are appreciable. Local variations up to about 50% may
be found in all of the cases examined. The results shown in fig. 8 were
calculated for a ratio of conductivities of 10; reference to table 2
shows that this value is, if anything, too low. A conductivity ratio of
20 would lead to perturbations of a factor of 2 or more, depending on
whather one considers enhancement or reduction of the undisturbed flux.

In order to be useful, a mcasurement of lunar heat flow must lead to
an estimate of mean flux in a region with dimensions measured in kilometers
which is accurate to better than 20%. If the error is much greater than
this the numbers will have little significance for geophysical or cosmological
theory. The mean value of 10 fairly closely spaced measurements would have
the required accuracy, assuming that the individual values are disturbed
by no more than 50% and that the disturbances are normally distributed
with zero mean value. This latter requirement implies that the probability

of finding a given positive disturbance must be the same as finding a




T

o'l

O'¢
o¢e
Oo'v

G0
o'l
Gl

G0
o'l
Gl

G0
Ol
gl



*saunbiy a8y} jo woyoq 8y} b umoys s! S43AD|

Jo uoyoanblyuod 8yl Q| 4O SDAUOD AJIANONPUOD D 40y AjaDINBeUdl By} WOy 9ouDISIp 484D D Xnjj
8y} 0} juiod uanlb o yo xn)y Jo ouos Byy smoys ainbiy yoos jo do} ayy 4b Bul Byl Jopunkd IDNJAID
jubis o jo adoys 8y} soy ooubsaqnioid By} SBSDD ||ID U] MO} 4DBY UO WNJDASQNS Y} puD (pe|ddiys)
49fp| 80DJANS BY} UBAMIBQ BODJIBJUI BY} JO SUONDINDBIJUCD JO Jaquinu D JO 49848 BY| ‘g 84nbig

3 e

Ol
o'l

Gl




20.

negative disturbance of the same amount., It is not at all clear that a
system of randomly distributed, small, buried craters would have this
property. Furthermore systematic error would invalidate this statistical
method of achieving accuracy if, for example, all of the measurements
were made within a large buried crater so that all were affected by a
negative disturbance.

An alternative approach is to escape the near-surface perturbations
by drilling deeply enough to make the measurement beneath them. It
should be possible to do this, because porosity will be eliminated or
greatly reduced by the weight of overburden, and very large contrasts in
conductivity will no longer be possible. Considerable depths of penetration
may be required, however, since disturbed temperatures extend to a distance

beneath the bottom of the anomalous region roughly equal to its diameter,
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5. THE BLANKET METHOD OF MEASURING LUNAR HEAT FLOW

A. Introduction.

If a sheet of material of known thermal conductivity is placed on
the lunar surface and allowed to come into thermal equilibrium, the heat
flow through the surface can be determined from measurements of the
thermal gradient in the sheet. A device consisting of a suitable insulating
material and temperature sensors for the determination of the gradient
is known as a fluxmeter, or blanket., Such devices have found meteorological
application in the study of heat exchange between the ground and the
atmosphere, but they have never been successfully used in the measurement
of terrestrial heat flow except in thermal regions where the heat flow is
orders of magnitude higher than normal.

The extreme simplicity of the blanket method makes it appear attractive
as a tool for determination of lunar heat flow. Associated difficulties

seem to outweigh this advantage, however, as is discussed below.

B. Simple steady-state blanket theory.

Since one has complete control over thc geometry of the blanket, it
is possible to select a shape that is amenable to simple theoretical
treatment, A circular disc with diameter greatly exceeding thickness
proves to be a convenient choice. An approximate method of treating this
problem has been suggested privately by A. H. Lachenbruch, and much of
the following discussion is due to him.

Consider a half space with zero initial temperature., If, starting
at t=0, the temperature of the surface is maintained at a constant value

L\T within a circle of radius R and zero outside the circle, then beneath
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the center of the circle (Lachenbruch, 19557)

T = ATlerfe x/ifiar ~{x/v/x24R2 Jer £c\/xZ+R2/\Jbat ]

where x is dejth. Beneath the center, as the depth apjroaches zero, the

vertical gradient apgroaches

VT = -AT[1/R erfc R/AGat + 1/./0E])

and the heat flow approaches

8Q = AT[R/R erfc R/AEGE + £/Afmt]

(21)

22)

@3)

(See table 1 for definitions of symbols.) In the steady state (23)reduces teQ

AQ = K AT/R

As an illustration of the aprlication of these results, consider
the case of a blanket placed on the plane lunar surface. The upper
surface of the blanket is surposed to be at zero, as is the lunar
surface outside the blanketed area. The assumption that the steady
periodic transient has somehow been removed is implicit. If the lunar
flux is everywhere Q, then AT in (24) becomes equal to‘dzb[§g, where
Xp is the thickness of the blanket and the subscript b de;;tes blanket

properties. From (24) we find a perturbation of flux

due to the blanket. This result is aj,.roximate first because the
undisturbed flux Q was used to calculate AT, and secondly because
AT is assumed constant when in fact it varies with radius in an
unknown way. The first objection can be overcome by substituting
gb for g‘in the expression for AT, calculating the new disturbance,

and iterating the process until it converges. For exam.le, if
K/K, =10 and R/X, = 50, we find A/Q = 0.2 and Ob/Q = 0.8.
Substituting Azb = 0.2 AT for AT leads to gb[g = 0,84, and a second
iteration givegigb(g = 0,842, The process evidently converges
rapidly., The seé;nd objection mentioned above is inherent in the

method, since edge effects are neglected. The error is small if

(24)

23)
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R/X, is large enough.

- In order to get a quantitative idea of the meaning of “large enough"
consider a second illustration of the method. A blanket is now supposed
to be buried so that its upper surface coincides with the initial plane
surface. The geometry is identical to that shown in figure 8(e). Again
we assume uniform flux as a first a;proximation. The thermal gradient
in the blanket is thin .(.’/Eb’ and elsewhere it is Q/K; the corresponding
temperatures at the level of the base of the blanket are‘gghng and

gzb/g respectively. Equation (24) then gives

Ae/e = 1-0 /¢ = %{K/Kb-ll (26)
in this case. Iteration again may be used to improve the result. This
problem can also be solved by the finite-difference method used above in
section 3, and a comparison of the results gives some idea of the range
of applicability of the approximate method (figure 9). The finite-difference
calculations agree well with equation (26) for ygb greater than about 20,
but iteration does not improve the agreement. The iteration process becomes
unstable for g/gb equal to 10 or less., It appears that some compensation
between the errors arising from neglected edge effects and those due to
other approximations in the derivation of (26) takes place, and the use
of (26) without iteration appears to give the more reliable results.
Since the finite-difference calculations are probably not accurate to
better than 5 per cent, the results given by the simple approach outlined
here are satisfactory.

There is a second type of disturbance arising from the presence of
a blanket on the lunar surface which may be treated exactly by the present
method, If the albedo of the blanket does not match that of the lunar
surface, the mean temperature of the top of the blanket will differ from
the mean surface temperature. The disturbance of flux can be estimated

directly from (23) and (24). For exam;le, if a blanket 100 cm in radius
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rests on material of ccnductivity 5 x 10-5 (material I(2) of tgble 2),
then a difference in temperature of omly O.Zoc produces a steady-state
disturbance in flux of 0.1 x 10.6 caL/cm? sec. Such a disturbance may
already be intolerably large; it becomes worse if the surface material
is a better conductor or if the radius of the blanket is reduced to a
more manageable figure. It will be difficult to measure the mean
temperature of the lunar surface to better than loc, so that a serious

disturbance due to mismatching albedo may go com;letely undetected.

C. Time-derendent problems associated with the blanket method.

It is convenient to consider separately two causes of time-derendent
temperatures. One is the steady periodic regime prevailing near the
lunar surface, and the other is the transient disturbance arising from
the emplacement of the blanket. The latter has two sources. The
blanket may not be at the same initial tem,erature as the lunar surface,
and after emplacement the establishment of the lunar thermal gradient
within the blanket changes both its temperature and that of the lunar
material. The first source of disturbance can be avoided by careful
tlanning, but the second cannot.

Steady periodic temperatures in the blanket were investigated by the
methods of section 2. The blanket, taken to be 5 em thick, was assumed
to rest on a thick layer having the properties of layer 2 of table 2(I),
on 50 cm of such material which rested in turn on the substratum of
table 2(III), or directly on the substratum. Three kinds of blanket
materials were considered (table 2{IV). Two of them, SI-10 and
SI-91, are "sujerinsulators' developed by Linde for the storage of
cryogenic fluids. The thermal conductivity of these materials is
extraordinarily low, as is shown in the table. A third blanket material
was assumed to have properties corresyponding roughly to those of ordinary

plastics (e.g. bakelite or plexiglass).
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Amplitudes and _hases of the temperature variations at the bottom
of the blanket are shown in table 3 for the various combinations of
blanket materials and assumed lunar configurations. The amplitude-
depth curve in the blanket has the same shape as the curves for the
upper layer shown in figure la; that is, the amplitude at the center
of the blanket exceeds the geometric mean of the surface amplitude
(314°C) and the amplitude shown in the table. Clearly only the
superinsulators are capable of reducing the fluctuation to manageable
proportions (order of tens of degrees or less) in the lower half of the
blanket. It is doubtful whether the mean tem;erature can be determined
in the "plastic’ blanket to sufficlent accuracy. The situation is made
worse by the fact that the expected gradient is inversely proportional
to the conductivity of the blanket. In the superinsulators the extected
gradient is on the order of 1-10°C/cm, whereas in the "plastic" a

2—10’3qq/cm seems likely.

gradient of 10
Hence we find that the use of superinsulators is indicated in
order to eliminate the steady periodic fluctuations most effectively
and to raise the mean thermal gradient to an easily measured value,
But now we must consider the transient associated with blanket emplace-
ment. We assume that the lateral dimensions of the blanket are great
compared with its thickness, so that the roblem can be treated as one
of l-dimensional heat flow. The blanket, occupying the region -L S‘g < 0,
is assumed to have initial temperature To, and thermal properties
indicated by the subscript b, The lunar material (assumed uniform) has
initial temperature mx, where x %o equals depth, and unsubscripted
properties.
Writing T for the Laglace transform of T, as before, we find
Eb = To/p + A sinh qp* + B cosh qpx 7

and

T = mx/p + C exp(-gx) (28)




Blanket material

S$1-10
S1-10
S$I-10
51-91
SI-91
S1-91
Plastic
Plastic

Plastic

Table 3. Amplitude and phases at
base of blanket 5 cm thick.

Substratum Amplitude Phase
(table 2) °C
I-2, III 4.5 -60
I-2 4.5 -60
I1I 0.2 -60
1-2, II1 0.1 -253
I.2 0.1 -252
111 0.004 -252
1-2, 11X 274 -11
I-2 274 -11
111 60 -39
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where A, B, C are constants independent of x. Application of initial
conditions _—'I_'b a_Tl'_'o and T = mx, and the conditions of continuity of

temperature and flux at x = o lead to

A= [KqTo(cosh qpL-1) - Km cosh q,L1/pD (29)

B = [xqro sinh qL + K, q, T - Km sioh q, L]/pD (30)

C = [-Kbqb'l‘o(cosh q L-1) - Km sinh qu]/pD (1)
where

D =-Kq sinh q,L - K q cosh gL (32)

Conversion of the hyperbolic functions in (29) through (32) to
exponentials, and expansion of D by the binomial theorem then leads to

the following expressions for the temperatures

= To{l-g%b—[f (H)n(erfc 20l x -(-Uzab_—L

+ M il )" erfe %&3 - f. ™" erfc ,‘;bth}

L2 5D 20L-x _ 2m+2)Ldx
+ [? 00" Gerfe 2R - terte ﬁ—] (33)

_ b . ..n @otDL | _x
T = To B+Bb§ ™) [2 erfc¢ @+Vﬁ)

- erfc(v-Lﬂé «J/EZE—) - erfc(‘%%l-‘ + 73——&)]

+M {2 [ierfc(—an-

Bie, Vi E " it
- 1erfc({7£’$ + 7==)] + mx (34)

Here M = (B-Bb)/(s-!-gb) and the other symbols are defined in table 1,
Equations (33) and (34) are most convenient to use for small values of
time, but they converge for all times. Numerical values of the flux in the

blanket divided by the undisturbed lunar flux are shown in figure 10 for
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blankets of material SI-10 and SI-91 on dust (table 2(I)2) and substratum
(table 2 (III)). In the most favorable case the flux in the blanket is
less than 15% of the equilibrium flux after 1 year. This result is
virtually independent of the To term; it arises mainly from the m term.
Hence no matter how carefully the initial temperature of the blanket is
matched to the mean temperature of the lunar surface, a major disturbance
is caused by emplacement of the blanket, and it persists for years if

the blanket is made of superinsulating material. The higher the
conductivity of the substratum, the longer is the time required to reach
equilibrium, The " lastic'' blanket, on the other hand, achieves equilibrium
within a year.

Thus we see that the two classes of time-dependent temperatures pose
difficulties that appear to require mutually incompatible sets of blanket
jroperties for their solution. 1In the examples given one must face
either a large periodic fluctuation throughout the blanket, or a
prohibitively long time for equilibrium to be established. It does not
appear that the use of a blanket material with intermediate properties
would solve the problem., One would then be confronted with both a large
periodic fluctuation and a long time constant. The thickness of the
blanket affects its thermal behavior in much the same way as its thermal
diffusivity, so that no escape can be found by changing this parameter.

A final consideration about the blanket tyre of flux meter
concerns its contact with the lunar surface. In all of the foregoing
calculations it has been assumed that there is no contact resistance
between the blanket and the lunar surface, a situation that is difficult
to achieve in practice. The effect of uniform contact resistance is to
reduce the effectiveness with which the periodic fluctuation is damped
out in the blanket and to increase the time required to equilibrate with
the lunar surface. Nonuniform contact resistance, which is likely to be

encountered due to irregularities on the lunar surface, will in addition
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cause thermal refraction within the dimensions of the blanket. This
will cause the flux in the blanket to differ from point to point,
necessitating a large number of temperature sensors to give a proper
mean gradient, Readout is not necessarily complicated by such a
requirement, since a single readout of many resistance elements in
series and/or :arallel to give an ajpropriate mean value would in all

probability be feasible.




29.
5. CONICLUSIONS
A. Ore-dimensional steady periodic temperatures.

A limited amount of information about the thermal properties of a
layer can be obtained from a ctudy of amplitude or phase of the thermal
wave as a function of depth, if the effect of other layers is small. The
latter condition can be recognized by the exponential decrease in amplitude
with depth. Study of both amplitude and phase gives little or no
information in addition to that provided by study of amplitude alone.

When the properties of more than one layer influence the temperatures to
an important degree, it may be possible to determine the properties of
those layers penetrated completely by a hole. Extrapolation beyond the
deepest observation of temperature is not reliable unless the depth to

the next interface is accurately known independently.

B. Propagation of the thermal wave near a hole in the surface layer.

A hole or thin spot in the surface layer will let high-amplitude
fluctuations leak into the substratum, where they may propagate laterally
to some distance. This effect does not appear to be serious, however.
The amplitudes are essentially unaffected by the presence of the hole a

few meters away.

C. Thermal refraction due to irregular thickness of the surface layer.
This steady-state phenomenon is far more serious than the periodic
disturbance discussed under B. Conditions very probably exist near the
lunar surface which cause differences in flux of 50% or more because of
thermal refraction. Such anomalies can be avoided by measuring heat flow

at depths below regions causing refraction. Errors due to this effect can



. . largely be rcmoved by taking the meens of several closely spaced observations.
It seems best to try tc tazke advantage of both techniques, and to measure
. temperatures in the deepest holes practicable at several poinic at a given

lunar site.

D. The blanket method of measuring lunar heat flow.

The following difficulties are recognized as standing in the way of a
measurement of lunar heat flow by a blanket-type fluxmeter.

1. The flux is disturbed by thermal refraction due to the presence of the
blanket. This effect can be kept small by choice of proper geometry
for the blanket, and the correction is calculable.

2. The flux is disturbed if the albede of the blanket does not match that
of the lunar surface and a difference in mean temperature between the

. blanket and the surface is thereby created. This disturbance is serious
if the mismatch in temperature exceeds a few tenths of degrees.

3. The blanket must be made of poorly conducting material in order to
damp out the steady periodic temperature fluctuation in a reasonable
thickness, and also to have a réadily meaburable ‘thermal gradient set
up by the lunar flux. But a blanket satisfying these requirements
takes years to come into equilibrium with the lunar flux. A blanket
having a manageable time constant associated with its emplacement
does not satisfy the requirements imposed by the steady periodic

fluctuations and the small value of flux to be measured.

4, The flux through the blanket may vary from point to point because of
variable contact resistance with the lunar surface. A large number of

temperature Sensors would be necessary to measure a meaningful average flux.
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Difficulties (2) and (3) in particular seem insuperable and make the

blanket method unattractive for the measurement of lunar heat flow.




32.

7. ACKNOWLEDGMENTS

The simplified treatment of the blanket was suggested by Dr. A. H.
Lachenbruch of the U. S. Geological Survey. Many of the results in
section 5 are due to him. I have benefitted from discussions with him

and with Dr. Marcus G. Langseth of the Lamont Geological Observatory.



e T —— T

33.

8. REFERENCES CITED
Carslaw, ¥, S. and J. C. Jaeger, 1959, Conduction of heat in solids,
London, Oxford Unmiv. Press, 510 pp.
Hapke, B., 1964, Photometric and other laboratory studies relating to
the lunar surface, in The lunar surface layer, J. W. Salisbury and

P. E. Glaser eds., New York Acadcmic Press, 532 pp.

Hibbs, A. R., 1963, A rypothesis that the surface of the moon is covered
with needle crystals, Icarus, 2, 181-186.

Lachenbruch, A. H., 1557, Three-dimensional heat conduction in permafrost
beneath heated buildings, U. S. Geol. Survey Bull. 1052-B, p. 51-69.

s 1959, Periodic heat flow in a stratified medium with application
to permafrost p:oblems, U. S. Geol. Survey Bull. 1083-A, p. 1-36.

Sinton, W. M., 19561, Temperatures on the lunar surface, in Physics and
astronomy of the moon, Z. Kopal ed., New York, Academic Press, 538 pp.

Warren, C. R., 1663, Surface material of the moon, Science, 140, 188-190.



